9 resultados para Hemoglobin S

em Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España


Relevância:

10.00% 10.00%

Publicador:

Resumo:

[EN] To determine whether conditions for O2 utilization and O2 off-loading from the hemoglobin are different in exercising arms and legs, six cross-country skiers participated in this study. Femoral and subclavian vein blood flow and gases were determined during skiing on a treadmill at approximately 76% maximal O2 uptake (V(O2)max) and at V(O2)max with different techniques: diagonal stride (combined arm and leg exercise), double poling (predominantly arm exercise), and leg skiing (predominantly leg exercise). The percentage of O2 extraction was always higher for the legs than for the arms. At maximal exercise (diagonal stride), the corresponding mean values were 93 and 85% (n = 3; P < 0.05). During exercise, mean arm O2 extraction correlated with the P(O2) value that causes hemoglobin to be 50% saturated (P50: r = 0.93, P < 0.05), but for a given value of P50, O2 extraction was always higher in the legs than in the arms. Mean capillary muscle O2 conductance of the arm during double poling was 14.5 (SD 2.6) ml.min(-1).mmHg(-1), and mean capillary P(O2) was 47.7 (SD 2.6) mmHg. Corresponding values for the legs during maximal exercise were 48.3 (SD 13.0) ml.min(-1).mmHg(-1) and 33.8 (SD 2.6) mmHg, respectively. Because conditions for O2 off-loading from the hemoglobin are similar in leg and arm muscles, the observed differences in maximal arm and leg O2 extraction should be attributed to other factors, such as a higher heterogeneity in blood flow distribution, shorter mean transit time, smaller diffusing area, and larger diffusing distance, in arms than in legs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[EN] Iron is essential for oxygen transport because it is incorporated in the heme of the oxygen-binding proteins hemoglobin and myoglobin. An interaction between iron homeostasis and oxygen regulation is further suggested during hypoxia, in which hemoglobin and myoglobin syntheses have been reported to increase. This study gives new insights into the changes in iron content and iron-oxygen interactions during enhanced erythropoiesis by simultaneously analyzing blood and muscle samples in humans exposed to 7 to 9 days of high altitude hypoxia (HA). HA up-regulates iron acquisition by erythroid cells, mobilizes body iron, and increases hemoglobin concentration. However, contrary to our hypothesis that muscle iron proteins and myoglobin would also be up-regulated during HA, this study shows that HA lowers myoglobin expression by 35% and down-regulates iron-related proteins in skeletal muscle, as evidenced by decreases in L-ferritin (43%), transferrin receptor (TfR; 50%), and total iron content (37%). This parallel decrease in L-ferritin and TfR in HA occurs independently of increased hypoxia-inducible factor 1 (HIF-1) mRNA levels and unchanged binding activity of iron regulatory proteins, but concurrently with increased ferroportin mRNA levels, suggesting enhanced iron export. Thus, in HA, the elevated iron requirement associated with enhanced erythropoiesis presumably elicits iron mobilization and myoglobin down-modulation, suggesting an altered muscle oxygen homeostasis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[EN] To determine central and peripheral hemodynamic responses to upright leg cycling exercise, nine physically active men underwent measurements of arterial blood pressure and gases, as well as femoral and subclavian vein blood flows and gases during incremental exercise to exhaustion (Wmax). Cardiac output (CO) and leg blood flow (BF) increased in parallel with exercise intensity. In contrast, arm BF remained at 0.8 l/min during submaximal exercise, increasing to 1.2 +/- 0.2 l/min at maximal exercise (P < 0.05) when arm O(2) extraction reached 73 +/- 3%. The leg received a greater percentage of the CO with exercise intensity, reaching a value close to 70% at 64% of Wmax, which was maintained until exhaustion. The percentage of CO perfusing the trunk decreased with exercise intensity to 21% at Wmax, i.e., to approximately 5.5 l/min. For a given local Vo(2), leg vascular conductance (VC) was five- to sixfold higher than arm VC, despite marked hemoglobin deoxygenation in the subclavian vein. At peak exercise, arm VC was not significantly different than at rest. Leg Vo(2) represented approximately 84% of the whole body Vo(2) at intensities ranging from 38 to 100% of Wmax. Arm Vo(2) contributed between 7 and 10% to the whole body Vo(2). From 20 to 100% of Wmax, the trunk Vo(2) (including the gluteus muscles) represented between 14 and 15% of the whole body Vo(2). In summary, vasoconstrictor signals efficiently oppose the vasodilatory metabolites in the arms, suggesting that during whole body exercise in the upright position blood flow is differentially regulated in the upper and lower extremities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[EN] This study was performed to test the hypothesis that administration of recombinant human erythropoietin (rHuEpo) in humans increases maximal oxygen consumption by augmenting the maximal oxygen carrying capacity of blood. Systemic and leg oxygen delivery and oxygen uptake were studied during exercise in eight subjects before and after 13 wk of rHuEpo treatment and after isovolemic hemodilution to the same hemoglobin concentration observed before the start of rHuEpo administration. At peak exercise, leg oxygen delivery was increased from 1,777.0+/-102.0 ml/min before rHuEpo treatment to 2,079.8+/-120.7 ml/min after treatment. After hemodilution, oxygen delivery was decreased to the pretreatment value (1,710.3+/-138.1 ml/min). Fractional leg arterial oxygen extraction was unaffected at maximal exercise; hence, maximal leg oxygen uptake increased from 1,511.0+/-130.1 ml/min before treatment to 1,793.0+/-148.7 ml/min with rHuEpo and decreased after hemodilution to 1,428.0+/-111.6 ml/min. Pulmonary oxygen uptake at peak exercise increased from 3,950.0+/-160.7 before administration to 4,254.5+/-178.4 ml/min with rHuEpo and decreased to 4,059.0+/-161.1 ml/min with hemodilution (P=0.22, compared with values before rHuEpo treatment). Blood buffer capacity remained unaffected by rHuEpo treatment and hemodilution. The augmented hematocrit did not compromise peak cardiac output. In summary, in healthy humans, rHuEpo increases maximal oxygen consumption due to augmented systemic and muscular peak oxygen delivery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[EN] Hypoxia-induced hyperventilation is critical to improve blood oxygenation, particularly when the arterial Po2 lies in the steep region of the O2 dissociation curve of the hemoglobin (ODC). Hyperventilation increases alveolar Po2 and, by increasing pH, left shifts the ODC, increasing arterial saturation (Sao2) 6 to 12 percentage units. Pulmonary gas exchange (PGE) is efficient at rest and, hence, the alveolar-arterial Po2 difference (Pao2-Pao2) remains close to 0 to 5mm Hg. The (Pao2-Pao2) increases with exercise duration and intensity and the level of hypoxia. During exercise in hypoxia, diffusion limitation explains most of the additional Pao2-Pao2. With altitude, acclimatization exercise (Pao2-Pao2) is reduced, but does not reach the low values observed in high altitude natives, who possess an exceptionally high DLo2. Convective O2 transport depends on arterial O2 content (Cao2), cardiac output (Q), and muscle blood flow (LBF). During whole-body exercise in severe acute hypoxia and in chronic hypoxia, peak Q and LBF are blunted, contributing to the limitation of maximal oxygen uptake (Vo2max). During small-muscle exercise in hypoxia, PGE is less perturbed, Cao2 is higher, and peak Q and LBF achieve values similar to normoxia. Although the Po2 gradient driving O2 diffusion into the muscles is reduced in hypoxia, similar levels of muscle O2 diffusion are observed during small-mass exercise in chronic hypoxia and in normoxia, indicating that humans have a functional reserve in muscle O2 diffusing capacity, which is likely utilized during exercise in hypoxia. In summary, hypoxia reduces Vo2max because it limits O2 diffusion in the lung.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[EN] With altitude acclimatization, blood hemoglobin concentration increases while plasma volume (PV) and maximal cardiac output (Qmax) decrease. This investigation aimed to determine whether reduction of Qmax at altitude is due to low circulating blood volume (BV). Eight Danish lowlanders (3 females, 5 males: age 24.0 +/- 0.6 yr; mean +/- SE) performed submaximal and maximal exercise on a cycle ergometer after 9 wk at 5,260 m altitude (Mt. Chacaltaya, Bolivia). This was done first with BV resulting from acclimatization (BV = 5.40 +/- 0.39 liters) and again 2-4 days later, 1 h after PV expansion with 1 liter of 6% dextran 70 (BV = 6.32 +/- 0.34 liters). PV expansion had no effect on Qmax, maximal O2 consumption (VO2), and exercise capacity. Despite maximal systemic O2 transport being reduced 19% due to hemodilution after PV expansion, whole body VO2 was maintained by greater systemic O2 extraction (P < 0.05). Leg blood flow was elevated (P < 0.05) in hypervolemic conditions, which compensated for hemodilution resulting in similar leg O2 delivery and leg VO2 during exercise regardless of PV. Pulmonary ventilation, gas exchange, and acid-base balance were essentially unaffected by PV expansion. Sea level Qmax and exercise capacity were restored with hyperoxia at altitude independently of BV. Low BV is not a primary cause for reduction of Qmax at altitude when acclimatized. Furthermore, hemodilution caused by PV expansion at altitude is compensated for by increased systemic O2 extraction with similar peak muscular O2 delivery, such that maximal exercise capacity is unaffected.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[EN] Acute hypoxia (AH) reduces maximal O2 consumption (VO2 max), but after acclimatization, and despite increases in both hemoglobin concentration and arterial O2 saturation that can normalize arterial O2 concentration ([O2]), VO2 max remains low. To determine why, seven lowlanders were studied at VO2 max (cycle ergometry) at sea level (SL), after 9-10 wk at 5,260 m [chronic hypoxia (CH)], and 6 mo later at SL in AH (FiO2 = 0.105) equivalent to 5,260 m. Pulmonary and leg indexes of O2 transport were measured in each condition. Both cardiac output and leg blood flow were reduced by approximately 15% in both AH and CH (P < 0.05). At maximal exercise, arterial [O2] in AH was 31% lower than at SL (P < 0.05), whereas in CH it was the same as at SL due to both polycythemia and hyperventilation. O2 extraction by the legs, however, remained at SL values in both AH and CH. Although at both SL and in AH, 76% of the cardiac output perfused the legs, in CH the legs received only 67%. Pulmonary VO2 max (4.1 +/- 0.3 l/min at SL) fell to 2.2 +/- 0.1 l/min in AH (P < 0.05) and was only 2.4 +/- 0.2 l/min in CH (P < 0.05). These data suggest that the failure to recover VO2 max after acclimatization despite normalization of arterial [O2] is explained by two circulatory effects of altitude: 1) failure of cardiac output to normalize and 2) preferential redistribution of cardiac output to nonexercising tissues. Oxygen transport from blood to muscle mitochondria, on the other hand, appears unaffected by CH.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[EN] A universal O2 sensor presumes that compensation for impaired O2 delivery is triggered by low O2 tension, but in humans, comparisons of compensatory responses to altered arterial O2 content (CaO2) or tension (PaO2) have not been reported. To directly compare cardiac output (QTOT) and leg blood flow (LBF) responses to a range of CaO2 and PaO2, seven healthy young men were studied during two-legged knee extension exercise with control hemoglobin concentration ([Hb] = 144.4 +/- 4 g/l) and at least 1 wk later after isovolemic hemodilution ([Hb] = 115 +/- 2 g/l). On each study day, subjects exercised twice at 30 W and on to voluntary exhaustion with an FIO2 of 0.21 or 0.11. The interventions resulted in two conditions with matched CaO2 but markedly different PaO2 (hypoxia and anemia) and two conditions with matched PaO2 and different CaO2 (hypoxia and anemia + hypoxia). PaO2 varied from 46 +/- 3 Torr in hypoxia to 95 +/- 3 Torr (range 37 to >100) in anemia (P < 0.001), yet LBF at exercise was nearly identical. However, as CaO2 dropped from 190 +/- 5 ml/l in control to 132 +/- 2 ml/l in anemia + hypoxia (P < 0.001), QTOT and LBF at 30 W rose to 12.8 +/- 0.8 and 7.2 +/- 0.3 l/min, respectively, values 23 and 47% above control (P < 0.01). Thus regulation of QTOT, LBF, and arterial O2 delivery to contracting intact human skeletal muscle is dependent for signaling primarily on CaO2, not PaO2. This finding suggests that factors related to CaO2 or [Hb] may play an important role in the regulation of blood flow during exercise in humans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

[EN] We hypothesized that reducing arterial O2 content (CaO2) by lowering the hemoglobin concentration ([Hb]) would result in a higher blood flow, as observed with a low PO2, and maintenance of O2 delivery. Seven young healthy men were studied twice, at rest and during two-legged submaximal and peak dynamic knee extensor exercise in a control condition (mean control [Hb] 144 g/l) and after 1-1.5 liters of whole blood had been withdrawn and replaced with albumin [mean drop in [Hb] 29 g/l (range 19-38 g/l); low [Hb]]. Limb blood flow (LBF) was higher (P < 0.01) with low [Hb] during submaximal exercise (i.e., at 30 W, LBF was 2.5 +/- 0.1 and 3.0 +/- 0.1 l/min for control [Hb] and low [Hb], respectively; P < 0.01), resulting in a maintained O2 delivery and O2 uptake for a given workload. However, at peak exercise, LBF was unaltered (6.5 +/- 0.4 and 6.6 +/- 0.6 l/min for control [Hb] and low [Hb], respectively), which resulted in an 18% reduction in O2 delivery (P < 0.01). This occurred despite peak cardiac output in neither condition reaching >75% of maximal cardiac output (approximately 26 l/min). It is concluded that a low CaO2 induces an elevation in submaximal muscle blood flow and that O2 delivery to contracting muscles is tightly regulated.